Comprehensive Learning Particle Swarm Optimizer for Constrained Mixed-Variable Optimization Problems

نویسندگان

  • Lei Gao
  • Atakelty Hailu
چکیده

This paper presents an improved particle swarm optimizer (PSO) for solving multimodal optimization problems with problem-specific constraints and mixed variables. The standard PSO is extended by employing a comprehensive learning strategy, different particle updating approaches, and a feasibility-based rule method. The experiment results show the algorithm located the global optima in all tested problems, and even found a better solution than those previously reported in the literature. In some cases, it outperforms other methods in terms of both solution accuracy and computational cost.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Particle Swarm Optimization Algorithm for Mixed-Variable Nonlinear Problems

Many engineering design problems involve a combination of both continuous anddiscrete variables. However, the number of studies scarcely exceeds a few on mixed-variableproblems. In this research Particle Swarm Optimization (PSO) algorithm is employed to solve mixedvariablenonlinear problems. PSO is an efficient method of dealing with nonlinear and non-convexoptimization problems. In this paper,...

متن کامل

An Improved Particle Swarm Optimizer Based on a Novel Class of Fast and Efficient Learning Factors Strategies

The particle swarm optimizer (PSO) is a population-based metaheuristic optimization method that can be applied to a wide range of problems but it has the drawbacks like it easily falls into local optima and suffers from slow convergence in the later stages. In order to solve these problems, improved PSO (IPSO) variants, have been proposed. To bring about a balance between the exploration and ex...

متن کامل

A Particle Swarm Optimizer for Constrained Numerical Optimization

This paper presents a particle swarm optimizer to solve constrained optimization problems. The proposed approach adopts a simple method to handle constraints of any type (linear, nonlinear, equality and inequality), and it also presents a novel mechanism to update the velocity and position of each particle. The approach is validated using standard test functions reported in the specialized lite...

متن کامل

Briefs SocietySociety Neural Networks

Many real world problems can be formulated as optimization problems with various parameters to be optimized. Some problems only have one objective to be optimized, some may have multiple objectives to be optimized at the same time and some need to be optimized subjecting to one or more constraints. Thus numerous optimization algorithms have been proposed to solve these problems. Particle Swarm ...

متن کامل

Constrained Optimization by Combining the α Constrained Method with Particle Swarm Optimization

Recently, Particle Swarm Optimization (PSO) has been applied to various application fields. In this paper, a new optimization method “α Constrained Particle Swarm Optimizer (αPSO)”, which is the combination of the α constrained method and PSO, is proposed. The αPSO is applied to several test problems such as nonlinear programming problems and problems with non-convex constraints. It is compared...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Computational Intelligence Systems

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2010